WORKSHOP on Effective Inquiry-Based Learning in Science Lesson

After students have collected data, they make conclusions.

Teachers can then introduce the scientific concepts that apply to what the students have discovered, or continue the inquiry cycle.

The result is a high interest lesson that sticks with the students for years to come.

ypes of Student Inquiry By:@tnev_mackenzie Structured Controlled Inquiry Guided Inquiry Students follow the Inquiry Free Inquiry Teacher chooses lead of the teacher Teacher chooses topics and identifies as the entire class Students choose topics/questions the resources engages in one their topics without and students students will use to reference to any inquiry together. design product or answer questions prescribed outcome. solution.

PROCESS S

- ✓ measuring
- classifying
- ✓ inferring
- v predicting
- communicating

Pre Inquiry-Based Learning

Q1. In which materials can electricity flow ?

Q2. What is meaning of "Voltage", "Electric current" or "Resistance"?

ELECTRIC CURRENT

Electric Resistance caused by atoms

Voltage

How to measure the electric current and voltage

Let's read the scale of meters!

Experiment & Gather data

Activity 1 Try to connect the meters with the electrical circuit !

Q3. What are there any relationship among "Voltage", "Electric current" and "Resistant"?

Pre Inquiry-Based Learning

Asking Question

Why is every electrical appliances connected in parallel connection?

Instruction

- 1. Connect 2 bulbs in series connection, then measure the voltage and electric current of each bulb.
- 2. Connect 2 bulbs in parallel connection, then measure the voltage and electric current of each bulb.

3.Compare the brightness of bulbs between the case in 1. and 2.

4. Conclusion

Let's measure the electric current and the voltage !

Workshop on Inquiry-Based Learning

Topics : Renewable Energy

Industrialization 👄 many problems

Introduction

What caused these problems?

3.Research

Principle of Motor

Principle of power generating

Mechanical Energy
Electromagnetic Induction
Electric Energy

Generator (Motor)

Hydro Power Generator

4. Hypothesis

Idea

Gear: Big gear to wind-mills, small gear to moto?

Presentation Time!

Present the results of your group based on DATA

Example

Angle of blade

Example Size of blades

Experiment & Gather data

How to make

Wind mills -part

Battery charger

How to make

Gear-part

Thank you for listening!

TOPIC 2 : Solar Cells

Solar Cells

Pre Inquiry-Based Learning

Q1. In which materials can electricity flow ?

P/N Silicon and the Function of a PV Cell

Silicon Atom: 4 electrons in outer shell. Shares with other silicon atoms to form a stable crystal bond of 8 electrons.

B

- **Boron Atom:** 3 electrons in outer shell. Shares with silicon atoms to form a crystal bond of 7 electrons and 1 hole, readily attracting extra electrons.
- Phosphorus Atom: 5 electrons in outer shell. Shares with silicon atoms to form a crystal bond of 8, plus one extra electron.
- Electron: Knocked around by energy of sunlight; moves through circuit from N-layer to P-layer.

LED(Light Emitting Diode)

To find the best way in which electricity can be produced as much as possible!

Experiment & Gather data

Presentation Time!

Present the results of your group based on DATA

Composition of light

Additional Information

Composition of light

Three primary colours of light

Let's make your own colours !

Thank you for listening!

